
OPEN 1
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

OPEN
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-02

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 12433 bytes

Attack Category • Path spoofing or confusion problem

Vulnerability Category • Indeterminate File/Path

• TOCTOU - Time of Check, Time of Use

Software Context • File Management

• File I/O

Location • fcntl.h

Description The open function establishes a connection between
a file and a file descriptor. Pathname is the name of
the file to open and fileFlags is the bitwise OR of
a series of constants used to specify the file access
modes. An optional additional input is used to
specify the permissions, such as read-only.

open() is vulnerable to TOCTOU attacks.

A call to open() should be flagged if the first
argument (the directory or file name) is used earlier
in a check-category call.

APIs Function Name Comments

_open use; win32

_wopen use; win32

open use

fopen

_tfopen Equivalent to fopen on
Windows

_wfopen Equivalent to fopen on
Windows

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource
followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html

OPEN 2
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

The open() call is a use-category call, which when
preceded by a check-category call can be indicative
of a TOCTOU vulnerability.

A TOCTOU attack in regards to open() can occur
when

a. A check for the existence of the file occurs or a
non-fd reference (pathname) to the filename occurs

b. An actual call to open occurs.

Between a and b, an attacker could, for example, link
the referenced file to a known file. The subsequent
freopen() call would have an unintended effect or
impact.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Applies to most
applications of
open().

Consider using
the safer set of
steps outlined
below for
opening and
creating files
as outlined in
Building Secure
Software
(referenced
below), page
220. If this
call must be
used create a
directory only
accessible by
the UID of
the running
program and
only manipulate
files in that
directory.

1) Perform an
lstat() of the file
before opening
it, saving the
stat structure.
2) Perform
Open(), passing
the O_CREAT
an O_EXCL

Effective.

OPEN 3
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

flags which will
cause the open
to fail if the
file cannot be
created.
3) Perform an
fstat() on the
file descriptor
returned by
the open() call,
saving the stat
structure.
4) Compare
three fields in
the two stat
structures to
be sure they
are equivalent:
st_mode,
st_info &
st_dev. If these
comparisons
are successful,
then we know
the lstat() call
happened on
the file we
ultimately
opened.
Moreover, we
know that we
did not follow
a symbolic
link (which is
why we used
lstat() instead of
stat()).

(This solution
comes from
the book
Building Secure
Software
referenced
below)

Applies to most
applications of
open().

The most basic
advice for
TOCTOU
vulnerabilities
is to not
perform a check
before the use.
This does not
resolve the

Does not
resolve the
underlying
vulnerability
but limits the
false sense of
security given
by the check.

OPEN 4
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

underlying
issue of the
execution of
a function on
a resource
whose state and
identity cannot
be assured, but
it does help
to limit the
false sense of
security given
by the check.

Applies to most
applications of
open().

Limit the
interleaving
of operations
on files from
multiple
processes.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Applies to most
applications of
open().

Limit the spread
of time (cycles)
between the
check and use
of a resource.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Recheck the
resource after
the use call
to verify that
the action
was taken
appropriately.

Effective in
some cases.

Signature Details int open (const char *path , int oflag, /* mode_t
mode */...)
FILE *_tfopen(const wchar_t *filename, const
wchar_t *mode)
FILE *_wfopen(const wchar_t *filename, const
wchar_t *mode)
FILE *fopen(const char *filename, const char
*mode)

Examples of Incorrect Code /* Access check added */

void die(char *msg)
{
perror(msg);
exit(1);
}

OPEN 5
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

int main()
{
int fd;
int access_stat;

access_stat=access("testfile",
R_OK);
if (access_stat = F_OK)
{
if ((fd =
open("testfile",O_CREAT|
O_WRONLY,0)) < 0)
die("open failed");
if (write(fd,"output\n",7) < 0)
die("write failed");
if (close(fd) < 0)
die("close failed");
}
return 0;
}

[...]
FILE *fp;
struct stat lstat_info;
if (lstat(fname, &lstat_info) ==
-1) {
fp1 = fopen("test.txt", "w");
} else {
fp1 = fopen("test.txt", "r+");
}
[...]

Examples of Corrected Code /** This example was taken from
the book Building Secure Software
**/
/** Viega, John & McGraw, Gary.
Building Secure Software: How to
Avoid Security Problems the Right
Way. Boston, MA: Addison-Wesley
Professional, 2001, pg. 220 **/

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>

FILE *safe_open_wplus(char *fname)
{
struct stat lstat_info,
fstat_info;
FILE *fp;

OPEN 6
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

char *mode = "rb+"; /*We perform
our own truncation.*/
int fd;

if(lstat(fname, &lstat_info) == -1)
{
/* If the lstat() failed for
reasons other than the file not
existing, return 0, specifying
error. */
if(errno != ENOENT) {
return 0;
}

if((fd = open(fname, O_CREAT|
O_EXCL| O_RDWR, 0600)) == -1) {
return 0;
}
mode = "wb";
} else {

/* Open an existing file */
if((fd = open(fname, O_RDWR)) ==
-1) {
return 0;
}

if(fstat(fd, &fstat_info) == -1 ||
lstat_info.st_mode !=
fstat_info.st_mode ||
lstat_info.st_ino !=
fstat_info.st_ino ||
lstat_info.st_dev !=
fstat_info.st_dev) {

close(fd);
return 0;
}

/* Turn the file into an empty
file, to mimic w+ semantics. */
ftruncate(fd, 0);
}

/* Open a stdio file over the low-
level one */
fp = fdopen(fd, mode);
if(!fp) {
close(fd);
unlink(fname);
return 0;
}
return fp;
}

/* No check */

void die(char *msg)

OPEN 7
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

{
perror(msg);
exit(1);
}

int main()
{
int fd;

if ((fd = open("testfile",O_CREAT|
O_WRONLY,0)) < 0)
die("open failed");
if (write(fd,"output\n",7) < 0)
die("write failed");
if (close(fd) < 0)
die("close failed");

return 0;
}

struct stat lstat_info,
fstat_info;
FILE *fp;
char *mode = "r+"
int fd;

if (lstat(fname, &lstat_info) ==
-1) {
if (errno != ENOENT) {
return 0;
}
if ((fd = open(fname, O_CREAT |
O_EXCL | O_RDWR, 0600)) == -1) {
return 0;
}
mode = "w";
}
else {
if ((fd = open(fname, O_RDWR)) ==
-1) {
return 0;
}

if (fstat(fd, &fstat_info) == -1 ||
lstat_info.st_mode !=
fstat_info.st_mode ||
lstat_info.st_ino !=
fstat_info.st_ino ||
lstat_info.st_dev !=
fstat_info.st_dev) {
close(fd);
return 0;
}
ftruncate(fd, 0);
}

fp = fopen(fd, mode);

OPEN 8
ID: 787-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

if (!fp) {
close(fd);
unlink(fname);
return 0;
}

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, pg.
220

• UNIX man page for open()

• Microsoft Developer Network Library
(MSDN).

• Re: gzip TOCTOU file-permissions

vulnerability2 (2005).

Recommended Resource

Discriminant Set Operating Systems • UNIX

• Windows

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://msgs.securepoint.com/cgi-bin/get/bugtraq0504/179/3.html
http://msgs.securepoint.com/cgi-bin/get/bugtraq0504/179/3.html
mailto:copyright@cigital.com

